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Abstract 

Many organisms on earth are exposed to radiation, both natural and anthropogenic. Research to date indicates 
varying levels of radionuclides in agroecosystems, particularly in soil, plants and water bodies. Soil amended with 

biochar has been proposed to enhance long-term atmospheric carbon sequestration and plant productivity. However, 
little is known about possible radionuclides (natural and anthropogenic) in soilless media with biochar amendments. 

Soilless media amended with different levels of biochar were sampled from Florida Agricultural and Mechanical 

University Research and Extension Center (FAMU-REC) in Quincy, Florida, to assess possible radionuclides activities 

using gamma spectrometry. The mean activity concentration values for 
235

U, 
226

Ra, 
23 2

Th, 
40

K, and 
137

Cs found in the 

samples were 0.92±0.02, 3.32±0.19, 1.35±0.46, 22.1±053 and 0.36±0.04 Bq kg
-1

, respectively. The estimated external 

(Hex) and internal (Hin) radiation hazard mean values were 0.02 and 0.03, respectively. The results are within 
estimated safe radiological limits for plant growing media. 

Keywords: radioactivity, radionuclides, soilless growth media, biochar, pyrolysis, containerization, anthropogenic 

Introduction 
 

Many organisms are exposed to both natural and anthropogenic radiation. The presence of radionuclides in the 

environment poses risk to human health and the environment(Sunovska et al., 2012). Evaluation of radionuclides in 
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environmental studies is important to better understand the distribution of radionuclides in different media in order to 

establish environmental radioactivity baseline levels for various media in the environment (Jordan et al. 1997).  

Extensive research has been conducted on radioactivity levels in agroecosystems relating to soils, plants, and water 

(Yamaguchiet al., 2016; Guidottiet al., 2015; Uosif et al., 2014; Gulinet al., 2013; Ohno et al., 2012; Yasunari et al., 

2011; Zarie& Al Mugren, 2010; Al-Hamarneh&Awadallah, 2009; Al-Kharouf et al., 2008; Bolcaet al., 2007; 

Papastefanouet al., 2006; Akhtar et al., 2005).  

The perceived limits to producing food for the growing global population which according to the United Nations is 

currently at 7.6 billion, projected to be 8.6 billion in 2030, 9.8 billion in 2050 and 11.2 billion in 2100, has been a 

source of debate and preoccupations for ages (UN DESA, 2017; Alexandratos&Bruinsma, 2012). Global population 

growth impacts of climate change and food insecurity have led to significant shift in agricultural practices over the past 

decade (FAO, IFAD, UNICEF, WFP and WHO, 2018; Thrall et al., 2010). A global agricultural technique, currently 

gaining significant attention that could increase production yields, is greenhouse cultivation (Mendez et al., 2015).  

Soilless systems, which involve containerization of plant roots within a porous rooting medium, substrate or growing 

medium, can be defined as any method of growing plants without the use of traditional soil as the rooting medium. It 

entails the use of soilless system as plant growth medium without using the traditional soil as the rooting medium 

(Barret et al., 2016; Savvas et al., 2013) is now attracting attention globally. Soilless media have been reported to 

produce higher yields and bumper harvests from smaller area, higher water and nutrients use efficiency, and more cost 

effective as compared to traditional soil system (RezaiNejad and Ismaili, 2014). 

The charred organic matter that remains after pyrolysis of biomass or manure, known as biochar, has been reported as 

one of the very few technologies that can actively sequester carbon (C) from the atmosphere when amended with soil in 

agricultural cropping practices (Prasad et al., 2018; Lehmann and Joseph, 2015; Altland and Locke, 2012). Amending 

soilless media with different levels of biochar have been shown to increase plant growth. However, soilless-biochar 

amendment system has only recently been gaining increasing attention worldwide (Huang and Gu, 2019; Mendez et al., 

2017). 

The available research suggests that work on possible radionuclides (natural and anthropogenic) in soilless media with 

biochar amendments is very limited. This study was conducted on soilless media comprising a mixture of coconut fiber 

(coir) and fine pine bark amended with different levels of biochar. Samples were collected from Florida Agricultural 

and Mechanical University Agricultural Extension farm in Quincy, Florida, located about 18 miles west from 

Tallahassee, Florida, to estimate the presence of possible radionuclides. Measurements of radioactivity levels of the 

samples were performed via gamma spectroscopic techniques using high purified germanium detector (HPGe). The 

findings will provide information on the presence and concentration of radionuclides in soilless media amended with 

biochar. 

Materials and methods 

2.1 Geographical Location of the Research Site 

The study site was Florida Agricultural and Mechanical University (FAMU) Research and Extension Center (REC) 

located in Quincy, in North Florida District of Gadsden County near the Florida-Georgia States line (30
o
67’N and 

84
o
61’W). The research site is about 30 miles from the main campus of FAMU, Tallahassee, the State’s capital. FAMU 

Research and Extension Center (FAMU-REC) is located on the more than 200 acres of farms, pines, lake, animal 

research laboratories and other facilities. It has an annual high and low temperatures of 26.11
o
C (79.0

o
F) and 12.94

o
C 

(55.3
o
F), respectively, with average temperature of about 19.53

o
C (67.15

o
F).  

The annual precipitation is around 59.67 inches and humidity level also around 94%. The research area is also in the 

Panhandle of Florida with sandy loam soil (FL039) (Thomas et al., 1961). FAMU-REC farming program was 

developed to assist and equip underserved agricultural populations, including small farmers, farm laborers and their 

families to attain sustainable lifestyles. It also provides access to agricultural sustainability production and management 

systems to better equip small growers through educational and hand-on training.  

2.2Sampling 

A total of 27 samples were collected from 9 treatments, three composited samples from each treatment. The collected 

samples from FAMU-REC were stored in labelled plastic ziplock bags and transported on ice in cooler to FAMU main 

campus School of the Environment laboratory. Collected samples were of composited triplicates from 9 treatments of 

growth media comprising control (0%), control + 1%, + 2%, + 3%, +4%, +6%, +8%, +10% and +12% biochar 
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amendments. For each treatment 3 composited containerized pots content were collected and placed into a cement 

mixer for homogeneity. While the mixer was running, roots and other debris in the samples were removed. 2 cup size 

good cook plastic cup was used to scooped about 450g of samples into the labelled ziplock bags.  

The process was repeated for the remaining treatments rolls before the samples were transported to the lab. In the 

laboratory, subsamples were stored in refrigerator at 4 
o
C prior to analysis. 

In the laboratory, subsamples were oven-dried at 105
o
 C to constant mass for moisture content analysis (Jackson, 1967) 

and sample pH was determined with 1 g fresh sample in 20 ml of deionized water (DI) shaken for 1.5 hours and left for 

5 mins equilibration time before pH measurement with Fisher Scientific Accument Basic AB15 pH meter (Ngatia et al., 

2017; Rajkovich et al., 2012; Yao et al., 2012) prior to samples preparation for radionuclides analyses. Uptake, 

retention,and distribution of radionuclides in plants are impacted by media characterization and properties such as 

organic matter content, pH, soil amendments and nutrient composition (Bolca et al., 2007; Pulhani et al., 2005).  

Samples were prepared for radionuclides analysis by transferring into 500 ml Marinelli beakers, covered, and sealed 

with parafilm to limit any possible escape of radon. The prepared samples were left for at least 30 days to reach secular 

equilibrium with radon and its daughters.Samples were handled carefully, and proper measures were taken by changing 

gloves during sample preparation to minimize cross contamination. 

2.3Analysis 

Gamma spectrometry analyses was performed on the samples using a high purity germanium detector (HPGe) 

manufactured by Canberra industries to determine the activity concentrations of the gamma emitters’ radionuclides. 

The detector is shielded with a thick lead shield with Cu inner layer. The active shield reduces the integral background. 

A pre-amplifier and amplifier spectra channeled to multichannel analyzer (MCA) with two digital converters were 

connected directly with a PC equipped with Canberra Genie 2000 software in which measured gamma spectra were 

stored and analyzed. The software internally calculates activity concentrations of radionuclides from all prominent 

gamma lines with background subtraction (Bikit et al., 2011). The instrument has an energy resolution of 0.5keV full 

width at half of maximum (FWHM) for a 1332 keV channel (using of Co-60) and a relative photo peak efficiency of 

35%. The instrument was calibrated for energy and efficiency over the photon energy range of 2 to 2000 keV using a 

National Institute of Standards and Technology (NIST) traceable mixed gamma standard. Each sample was counted for 

a period of 86400s.  

2.3
235

U, 
226

Ra, 
232

Th, 
40

K and 
137

Cs 

The activity concentrations of the natural radionuclides
235

U and 
40

K, and the anthropogenic radionuclide 
137

Cs were 

determined directly from their photopeak energies lines of 185.7 (54.0%) 1460.8 (10.7%), and 661.7 (85.1%) keV, 

respectively. The weighted mean photopeakenergy lines of
214

Pb (295.2 and 351.9) and
214

Bi (609.3 and 1120.3) were 

used to estimate the activity concentration value of 
226

Ra.The weighted mean photo peaks energies lines of
212

Pb 

(238.6),
212

Bi (727.2) and 
228

Ac (338.3, 911.6 and 969.1) were used to determine the activity concentration value of 
232

Th (Khol'nov et al., 1982;Alnour et al., 2012).Using the weighted meanphotopeaks procedure for multiple energy 

lines gives more accurate results with lower errors comparedto using only one of the photopeak line (Papp et al., 1997). 

The measured and estimated activity concentrations values of the radionuclides reported in Bqkg
-1

 are presented in 

Table 2. 

Table 1: Physical and Chemical Properties of Media from FAMU-CE Media 

ID pH MC (%) OM (%) 

0% 6.15±0.03 69.74 73.29 

1% 6.02±0.01 70.27 71.93 

2% 6.03±0.06 70.83 70.54 

3% 6.23±0.09 72.38 72.70 

4% 6.47±0.05 71.28 71.95 

6% 6.46±0.02 70.93 74.17 

8% 6.68±0.02 70.71 71.74 

10% 6.76±0.01 69.57 70.89 

12% 6.84±0.02 67.05 70.56 
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Table 2: Activity Concentration, A, of Radionuclides (Bq kg
-1

) from FAMU-CE Media 

 

ID 
235

U 
226

Ra 
232

Th 
40

K 
137

Cs 

0% 0.92±0.05 2.93±0.12 1.01±0.04 0.00 0.21±0.02 

1% 0.92±0.05 2.54±0.11 0.68±0.08 0.00 0.19±0.02 

2% 0.99±0.05 2.94±0.12 1.02±0.11 22.54±0.54 0.22±0.02 

3% 0.94±0.05 3.10±0.13 4.98±0.18 21.10±0.52 0.39±0.03 

4% 0.92±0.05 3.78±0.14 0.57±0.09 21.37±0.53 0.37±0.03 

6% 0.81±0.04 2.89±0.13 0.90±0.04 19.57±0.51 0.39±0.03 

8% 0.90±0.05 3.63±0.14 0.88±0.10 22.18±0.54 0.48±0.03 

10% 0.96±0.05 3.93±0.14 1.05±0.10 24.23±0.57 0.45±0.02 

12% 0.94±0.10 4.14±0.29 1.02±0.22 23.70±1.13 0.55±0.06 
 

2.4 Radiological Hazard Indices 

2.4.1 Radium Equivalent activity  

To compare the specific activity and the radiation hazard associated with the samples with respect to the natural 

radionuclides (
226

Ra, 
232

Th and 
40

K), the widely used radiation hazard index, the radium-equivalent activity, (Raeq), as 

expressed by Fonseca and Pecequilo (2015); Beretka and Matthew (1985); UNSCEAR (1982) was used; Equation 1.  

𝑅𝑎𝑒𝑞 = 370(
𝐴𝑅𝑎

370
+ 

𝐴𝑇ℎ

259
+ 

𝐶𝐾

4810
)  Eqn  (1)  

Eqn (1) can be rewritten as Eqn (2) 

𝑅𝑎𝑒𝑞 (𝐵𝑞𝑘𝑔−1) =  𝐴𝑅𝑎 +  1.43𝐴𝑇ℎ + 0.077𝐴𝐾  Eqn (2)   

where ARa, ATh and AK are the activity concentrations of 
226

Ra, 
232

Th and 
40

K, respectively. Raeq is the weighted sum of 

the afore mentioned natural radionuclides. The relation implies that 370 or 1 Bq kg
-1

 of 
226

Ra, 259 or 1.43 Bq kg
-1

 of 
232

Th and 4810 or 0.077 Bq kg
-1

 of 
40

K produce the same γ-ray dose rate (Alzubaidi et al., 2016). 

2.4.2Absorbed Dose Rate 

Depending on the radionuclides in the sample, a parameter used to assess radiation exposure and radiological hazard 

from radionuclides in media, the absorbed dose rate (DR) was also estimated (Alzubaidi et al., 2016). Thisγ-ray 

absorbed dose rates (DR) wasestimated using UNSCEAR (2000) conversion factors as stated in equation (3) 

(Hamidalddin, 2014; Veiga et al., 2006; UNSCEAR, 2000). 

𝐷𝑅 𝑛𝐺𝑦ℎ−1 = 0.462𝐴𝑅𝑎 + 0.604𝐴𝑇ℎ + 0.0417𝐴𝐾 Eqn (3)   , 

where DR is dose rate at 1 m above ground, ARa, ATh and AK are the calculated activity concentrations of 
226

Ra,
232

Th and 
40

K in Bq kg
-1

from the measured samples, respectively. 

2.4.3Annual effective dose  

The annual effective dose which considers the absorbed dose rate (DR), the conversion coefficient of 0.7(Sv Gy
-1

) and 

the average outdoor spent time fraction of 0.2 (UNSCER, 2000) was calculated using equation (4): 

𝐴𝐸𝐷 µ𝑆𝑣𝑦−1 = 𝐷𝑅 𝑛𝐺𝑦ℎ−1 ×  8766 ℎ𝑦−1 × 0.2 × 0.7 𝑆𝑣𝐺𝑦−1 × 10−3 Eqn (4) 

2.4.4External and Internal hazard index 

Other criteria used to limit natural radiation exposure to the population under the external hazard index (Hex) and the 

internal hazard index (Hin) which describes the radon and its progeny risk to internal organs (Saleh and Shayeb, 2014) 

were also estimated in the study. For safety requirement, Hin is used for purposes of reducing 
226

Ra acceptable activity 

concentration to half the normal limit of less than or equal to unity (Beretka and Mathew, 1985). The relations of Hex 

and Hin are expressed in equations (5) and (6), respectively. 

𝐻𝑒𝑥 =  
𝐴𝑅𝑎

370
+ 

𝐴𝑇ℎ

259
+ 

𝐴𝐾

4810
 = ≤ 1 Eqn (5) 

𝐻𝑖𝑛 =  
𝐴𝑅𝑎

185
+ 

𝐴𝑇ℎ

259
+ 

𝐴𝐾

4810
  Eqn (6) 

Summary of the estimated values of Raeq(𝐵𝑞𝑘𝑔−1),𝐷𝑅 𝑛𝐺𝑦ℎ−1 ,𝐴𝐸𝐷(µ𝑆𝑣𝑦−1), 𝐻𝑒𝑥and 𝐻𝑖𝑛are reported in Table 3. 



Journal of Agriculture and Life Sciences                 Vol. 8, No. 2, December 2021            doi:10.30845/jals.v8n2p1 

 

5 

Table 3: Estimated Values of Raeq (Bq kg
-1

), DR (nGy h
-1

), AED (µSv y
-1

), Hex (≤1), and Hin from the measured samples 

from FAMU-REC 
 

ID Raeq DR AED Hex Hin 

R0 4.37 1.96 2.41 0.01 0.02 

R1 3.52 1.59 1.95 0.01 0.02 

R2 6.12 2.91 3.57 0.02 0.02 

R3 11.85 5.32 6.53 0.03 0.04 

R4 6.24 2.98 3.66 0.02 0.03 

R6 5.69 2.70 3.31 0.02 0.02 

R8 6.60 3.14 3.85 0.02 0.03 

R10 7.30 3.46 4.25 0.02 0.03 

R12 7.42 3.51 4.31 0.02 0.03 

 

3.0 Results and Discussion 

3.1 Natural radionuclides 

The main aim of this study was to evaluate the possible presence of radioactivity levels in growth media at FAMU-

REC and establish baseline data for the local communities, and Florida as a whole. The media samples activity 

concentration values were expressed as mean values (Bq kg
-1

). The main gamma emitting natural and anthropogenic 

radionuclides activity concentrations (Bqkg
-1

) measured from the media samples are shown in Table 2. The activity 

concentrations of the measured radionuclides ranged from 0.81±0.04 to 0.99±0.05, 2.89±0.13 to 4.14±0.29, 

0.68±0.08 to 4.98±0.18and 19.57±0.51 to 24.23±0.57 Bq kg
-1

 for 
235

U, 
226

Ra, 
232

Th and
40

K 
13

, respectively. The mean 

activity concentrations for both natural and anthropogenic radionuclides, 
235

U, 
226

Ra, 
232

Th, 
40

K and 
137

Cs, for the 

media samples analyzed were 0.92, 2.99, 1.25, 22.10 and 0.36Bq kg
-1

, respectively. 
40

K was not identified in 1% and 

2% media biochar amendments (Table 2). The distributions of the radionuclides measured in the samples are 

represented in Figure 1. 

The estimated 
226

Ra, 
232

Th and 
40

K activity concentrations values of the analyzed samples were compared to similar 

studies of soil worldwide. The world 
226

Ra, 
232

Th and 
40

K activity concentrations values (Bq kg
-1

) ranged between 17 – 

60, 11 – 64, and 140 – 850, with mean activity concentration values (Bq kg
-1

) of 35, 30 and 400, respectively, 

according to UNSCEAR (2000). It was determined from this study that all the estimated and mean activity 

concentration values were below the world and United States values as shown in Table 4. 

Table 4: Comparison of 
226

Ra, 
232

Th and 
40

K activity concentrations levels around the world in Bq kg
-1

. 

Country 226Ra 

 

232Th 

 

40K 

 

Reference 

 

 

Ranged Mean Ranged  Mean  Ranged Mean 

  U.S.A 8 160 40 4 – 130 35 100 700 170 Myrick et al., 1983 

Ghana 

10.72- 

40.74 23.8 20.22-76.66  43.64 80.55-245.44 199.69 Adjirackor et al., 2014 

Malaysia 7–222 57 10–158 68 104–1225 427 Almayahi et al., 2012 

Jordan 47.3-77.8 57.7 14.0-20.8 18.1 31.3-251.5 138.1 

Saleh & Abu Shayeb, 

2014 

Worldwide  17 - 60 35 11 – 64 30 140 - 850 400 UNSCEAR, 2000 

Present 

Study 2.54 -4.14 3.32 0.57 – 4.98 1.35 19.57-24.23 17.19 

Osei et al., 

2019 

 
 

The highest activity concentration values of 4.14±0.29 Bq kg
-1

 and 0.55±0.06 Bq kg
-1

 for 
226

Ra and 
137

Cs, 

respectively, were found in sample 12% media biochar amendment. The highest value of 24.23±0.57 Bq kg
-1

 activity 

concentration 
40

K was detected in sample 10%, with no detection in samples 0% and 1% media biochar amendments. 

The mean Raeq of 6.57 Bq kg
-1

 in the present study was lower than recommended maximum radium equivalent level of 

370 Bq kg
-1

 in soil (Almayahi et al., 2012). These levels are below what is considered suitable for the growth of 

agricultural plants.  
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The studied absorbed dose rate ranged from 1.59 to 5.32 nGy h
-1

 with a mean value of 3.06 nGy h
-1

, as compared with 

the world ranged and mean of 18 to 93 and 57 nGy h
-1

, respectively (UNSCEAR, 2000). The annual effective dose of 

samples was determined to range between 1.93 and 6.53 µSv y
-1

 with a mean of 3.76 µSv y
-1

. The external (Hex)and 

internal (Hin) radiation hazards in the present study ranged from 0.01 to 0.02 and 0.02 to 0.04 with means of 0.02 and 

0.03, respectively. All the (Hex)and (Hin) values are less than unity, suggesting that the media are radiologically hazard 

free, as shown in Table 3. The distributions of the radionuclides measured in the samples are represented in Figure 1. 

 
Figure 1: Distribution of radionuclides within different treatments. 

3.2 Anthropogenic radionuclide (
137

Cs) 

137
Cs in the environment has historically been the result of the 1945 to 1980, 1986 nuclear weapon testing in the 

atmosphere, the Chernobyl accident and the catastrophic earthquake and tsunami which occurred in northeastern  

Japan causing a severe destruction at the Fukushima Daichi Nuclear Power Plant in March 2011, respectively, 

(Yasunari et al., 2011). It was reported that by the end of 1970s, approximately 5.2 kBq m
-2

 of 
137

Cs deposit density 

was estimated values for 40
o
-50

o
 of the North Latitudes (UNSCEAR, 2000 Annex C). The deposition density corrected 

for decay by September 2011 was 2.5 kBq m
-2

(UNSCEAR, 2000 Annex C), and was approximately 2.48 kBq m
-2

 by 

September 2019. In the present study, 
137

Cs was detected in all the treatments. The activity concentrations of 
137

Cs in 

the present study ranged from 0.19±0.02to 0.55±0.06Bq kg
-1

, with mean activity concentration of 0.36±0.04 Bq kg
-1

, 

values less than levels in agricultural soil (Asiani et al., 2003). 

4.0 Conclusion 

The study established baseline data for the application of soilless media with various levels biochar amendments as 

plant growth media in radiological health perspective. The reported values (0.92±0.02, 3.32±0.19, 1.35±0.46, 22.1±053 

and 0.36±0.04 Bq kg
-1

 for 
235

U, 
226

Ra, 
23 2

Th, 
40

K, and 
137

Cs, respectively) were significantly lower compared to world 

average and other reported literature (Table 4). Based on the results, it can be concluded that soilless media use for 

planting is a safe technique and does not increase radioactivity levels in agricultural practices. Similar research using 

different organic media and different levels of biochar amendments need to be conducted in the future to better to 

evaluate and validate the data in this study., It will also enhance our understanding of the activity concentration of the 

individual medium for applications and combinations of suitable media for plants growth. This research provides data 

that is useful for assessing possible radiation exposure to humans and contribute to the selection of the media. Even 

though the levels of the detected radioactivity were low compared to worldwide levels, accumulation in humans via 

media to plant transfer for long period may pose radiological risk.   

Based on the findings of this study, it is recommended that additional work is needed in the following areas:  

1) Understanding transfer factor of the detected radionuclides into food produced in this area; and 

2) Possible radionuclides concentrations of fertilizers used in such management practices. 
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