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Abstract 
 

In this paper, we describe how prototype-based classification can be used for knowledge acquisition and 

automatic image classification. We developed the prototypical methods and techniques of the system in order to 

serve the special development issues of an expert when starting a new image-based application. Often an expert 

can present a catalogue of prototypical images instead of a large enough image data base for setting up the 

system. Starting with the set of prototypical images we can learn the important image features and the concept 

description of an image class. In this paper, we describe the necessary functions a prototype-based classifier 

should have. Besides the similarity calculated based on the numerical image features we introduce the experts 

estimated similarity as new knowledge piece and a new function that optimizes between this similarity and the 

automatically calculated similarity by the system in order to improve the system accuracy. This function reduces 

the influence of the uncertainty in the calculated features and the similarity measure and brings the similarity 

value closer to the true similarity value. The test of the system is done on the study of the internal mitochondrial 

movement of cells. The basis for the development is fluorescent cell images. The aim was to discover the different 

dynamic signatures of mitochondrial movement. For this application the expert knows from the literature how the 

different signatures should look like and based on this knowledge he picks prototypical images from his 

experiment. We present our results and give an outlook for future work. 
 

Keywords: Discover Dynamic Signatures of Mitochondrial Movement, Prototype-Based Classification, 

Adjustment Theory, Feature Selection, Prototype Selection, Knowledge Acquisition 
 

1 Introduction 
 

In this paper, the behavior of mitochondria in living cells is studied for an experiment in drug discovery. 

Mitochondria are semi-autonomous organelles with a large variety of functions in cellular metabolism. Metabolic 

control mechanisms as well as the balance of the replication cycles of the nucleus and mitochondria require a 

subtle interplay between these organelles and the other parts of a cell. The discovery of micro compartmentation 

attributes that play a new physiological role to cellular structure is essential. They are no longer only 

morphological entities but rather provide a basis for substance gradients and the organization of multienzyme 

complexes. The cytoskeleton is the most prominent and ubiquitous system bringing organelles into the right 

position and provides a large and heterogeneous surface for associations with other structures and molecules. 

Thus, neither the distribution nor the appearance of mitochondria (and all other organelles) might be at random 

and without control. 
 

Mitochondria are semi-autonomous organelles which are endowed with the ability to change their shape (e.g., by 

elongation, shortening, branching, buckling, swelling) and their location inside a living cell. In addition they may 

fuse or divide. Dislocation of mitochondria may result from their interaction with elements of the cytoskeleton, 

with microtubules in particular, and from processes intrinsic to the mitochondria themselves [BHV94].  
 

Emphasis in system biology is laid on the methods for visualizing mitochondria in cells and following their 

behaviour. The most powerful tools to detect and identify mitochondria in situ are advanced fluorescence 

techniques. Fluor chroming endows the organelles with the capability of luminescence. Thus very fine extensions, 

below the resolution power of a light microscope, can be detected because of their fluorescence. In addition, 

spatial or temporal variations of the fluorescence emission along a single mitochondrion report changes of the 

inner compartment.  
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Fluorescence methods provide unique possibilities because of their high resolving power and because some of the 

mitochondria-specific fluorochromes can be used to reveal the membrane potential. Fusion and fission often occur 

in short time intervals within the same group of mitochondria. 
 

The main disadvantage of fluorescence techniques is that the dyes are susceptible to photobleaching, which leads 

to the formation of cytotoxid free radicals and singlet oxygen, and even leads to dissipation of the electrochemical 

gradient [JWC80].Photobleaching and its deleterious effects can be almost avoided by using low excitation 

intensities and image acquisition systems (e.g., intensified SIT cameras, or cooled CCD cameras which allow 

photon integration on the chip). 
 

Despite the general uniformity of mitochondria (an outer membrane enclosing an inner membrane to which 

tubular, vesicular, crestlike, or prismatic membrane invaginations are connected), it is still uncertain whether a 

single population, or several populations in-habit a cell. The answer to this question depends on the definition of 

„„population‟‟ which could either be characterized by morphological criteria, by different fate, or by genetic 

differences. This association with the spindle assures equal distribution of the mitochondria to the spermatocytes 

during the meiotic divisions. Proteins which bind to the outer mitochondrial membrane and to microtubules have 

been identified. 
 

The following work is restricted to those aspects related to mitochondrial motion and the physiological 

significance of the interactions. While imaging with fluorescence techniques allows the visualization of the 

mitochondria, the automatic image analysis and the detection of the different stage of the mitochondria 

appearances is still missing. 
 

In this paper we describe how prototype-based classification can be used for knowledge acquisition and automatic 

image interpretation of the appearances of the mitochondria. We describe why prototype-based classification is a 

novel method for this kind of application compared to normal clustering. We describe the necessary functions a 

prototype-based classifier should have. We introduce the expert`s estimated pairwise similarity between the 

images as new knowledge piece and a new function that optimizes between this similarity and the automatically 

calculated similarity by the system in order to improve the system accuracy.This function reduces the influence of 

the uncertainty in the calculated features and similarity measure and brings the similarity value closer to the true 

similarity value. The test of the system is done on the study of the internal mitochondrial movement of cells. The 

basis for the development is fluorescent cell images. The aim was to discover the different dynamic signatures of 

mitochondrial movement. In Section 2 we present related work. The material used for this study is described in 

Section 3. Section 4 explains the methodology for knowledge acquisition and for the development of the 

automatic image classifier based on prototypical images. The image analysis procedure is described in Section 5. 

Our novel texture descriptor is presented in Section 6. The method and techniques of the prototypical classifier 

are given in Section 7.They are represented in our novel software tool PROTOCLASS. Results are given in 

Section 8. We give conclusion and an outlook for future work in Section 9. 
 

2 Related Work 
 

Prototypical classifiers have been successfully studied for medical applications by Schmidt and Gierl [ScG01], 

Perner [Pern08a] for image interpretation and by Nilsson and Funk [NiF04] on time-series data. The simple 

nearest-neighbor-approach [AKA91] as well as hierarchical indexing and retrieval methods [BKS98] have been 

applied to the problem. It has been shown that an initial reasoning system could be built up based on prototypical 

cases. The systems are useful in practice and can acquire new cases for further reasoning [BKS98] during 

utilization of the system. 
 

Prototypical images are a good starting point for the development of an automated image classifier [SaH02]. This 

knowledge is often collected by human experts in form of an image catalogue. It is often easier for an expert to 

show prototypical images instead of describing the appearance of an object under consideration and name the 

important image features. In our experiment described in this paper the biologist knows what he wants to trigger 

in a cell by putting some chemical on it and how a prototypical image should look like. This knowledge can be 

used as starting point for the development of an automatic image classification system. We describe based on the 

study of the internal mitochondrial movement of cells [KPSBP06] how such a classifier in combination with 

image analysis and feature extraction can be used for incremental knowledge acquisition and automatic 

classification.  
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We not only use the numerical calculated similarity value as input we also use the experts estimated pairwise 

similarity between the images as new knowledge piece and a new function that adjusts this similarity value given 

by the expert and the automatically calculated similarity value by the system in order to improve the system 

accuracy. The test of the system is done on the study of the internal mitochondrial movement of cells. 

The classifier is set up based on prototypical cell appearances in the image such as for e.g. „healthy cell“, „cell 

dead“, and „cell in transition stage“. For these prototypes are calculated image features based on random set 

theory that describes the texture on the cells [PPM02]. The prototype is represented then by the attribute-value 

pair, experts given pairwise similarity value, and the class label. These settings are taken as initial classifier 

settings in order to acquire the concept description about the dynamic signatures. 
 

The importance of the features and the feature weights are learned by the protoclass-based classifier [Per08a]. 

After the classifier is set up each new cell is then compared by the protoclass-based classifier and the similarity to 

the prototypes is calculated. If the similarity is high the new cell gets the label of the prototype. If the similarity to 

the prototypes is too low then there is evidence that the cell is in transition stage and a new prototype has been 

found. With this procedure we can learn the dynamic signature of the mitochondrial movement. 
 

3 The Application 
 

After the assay has been set up and the interaction of the cells with drug and proteins has been started it is not 

quite clear what the concepts of the different phases of a cell are. This has to be learnt during the usage of the 

system.  
 

Based on their knowledge the biologists set up several descriptions for the classification of the mitochondria. 

They grouped these classes in the following classes: tubular cells, round cells and dead cells. For the appearance 

of these classes the expert could show different prototypical images (see images in Figure 1). It is to be 

emphasized that the expert did not only pick one unique prototypical image instead of he picked several 

prototypical images to show the variances of the objects among the respective class. This information can be 

taken as starting point for the development of an automatic image classification system. We start with a set of 

images for each class that is limited to a few number of cases. 
 

The aim should be to learn from these limited prototypical image data set the important features for the object 

description and the concept description for the different classes.  
 

Please In chart Fig. 1 

Fig. 1. Sample Images for three Classes 

 

The prototypical cells were selected and the features were calculated [Per08b]. We chose to describe the texture 

on the cells. The expert rated the similarity between these prototypical images.Our data set consist of 223 

instances with the following class partition: 36 instances of class Death, 120 instances of class Round, 47 

instances of class Tubular, and 114 features for each instance.  
 

The expert chose for each class a prototype shown in Figure 2. The test data set for classification has then 220 

instances. For our experiments we also selected 5 prototypes pro class respectively 20 prototypes pro class. The 

associate test data sets do not contain the prototypes. 
 

Please In chart Fig. 2 

Fig. 2. The Prototypes for the class Death, Round and Tubular 

 

4 Methodology 
 

Figure 3 summarizes the knowledge acquisition process based on protoclass-based classification.  
 

We start with one prototype for each class. This prototype is chosen by the biologist based on the appearance of 

the cells. It requires that the biologist has enough knowledge about the processes going on in cell-based assays 

and can decide what kind of reaction the cell is showing. 

 

Please In chart Fig. 3 

 

Fig. 3. Methodology for Prototype-based Classification 
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The discrimination power of the prototypes is checked first based on the attributes values measured from the cells 

based on our random set texture descriptor and the chosen similarity measure. Note that we calculated a large 

number of attributes for each cell. However many attributes does not mean that we will achieve a good 

discrimination power between the classes. It is better to come up with one or two attributes for small sample sizes 

in order to ensure a good performance of the classifier. The expert manually estimates the similarity between the 

prototypes and inputs these values into the system. The result of this process is the selection of the right similarity 

measure and the right number of attributes. With this information is set-up a first classifier and applied to real 

data.  
 

Each new data gets associated with the label of the classification. Manually we evaluate the performance of the 

classifier. The biologist gives the true or gold label for the sample seen so far. This is kept into a data base and 

serves as gold standard for further evaluation. During this process the expert will sort out wrong classified data. 

This might happen because of too few prototypes for one class or because the samples should be divided into 

more classes. The decision what kind of technique should be applied is made based on the visual appearance of 

the cells. Therefore, it is necessary to display the prototypes of class and the new samples. The biologist sorts 

these samples based on the visual appearance. That this is not easy to do by human is clear and needs some 

experiences in describing image information [SaH02]. However, it is a standard technique in psychology in 

particular gestalts psychology known as categorizing or card sorting. As a result of this process we come up with 

more prototypes for one class or with new classes and at least one prototype for these new classes.  
 

The discrimination power needs to get checked again based on this new data set. New attributes, new number of 

prototypes or a new similarity measure might be the output. The process is repeated as long as the expert is 

satisfied with the result. As result of the whole process we get a data set of samples with true class labels, the 

settings for the protoclass-based classifier, the important attributes and the real prototypes. The class labels 

represent the categories of the cellular processes going on in the experiment. The result can now be taken as a 

knowledge acquisition output. Just for discovering the categories or the classifier can now be used in routine work 

at the cell-line. 
 

5 Image Analysis 
 

The color image has been transformed into a gray level image (see Fig. 4). The image is normalized to the mean 

and standard gray-level calculated from all images to avoid invariance caused by the inter-slice staining 

variations. 
 

Automatic thresholding has been performed by the algorithm of Otsu [O79]. The algorithm can localize the cells 

with their cytoplasmatic structure very well. We then applied morphological filters like dilation and erosion to the 

image in order to get a binary mask for cutting out the cells from the image.  
 

The gray levels ranging from 0 to 255 are quantized into 12 intervals t. Each subimage f(x,y) containing only a 

cell gets classified according to the gray level into t classes, with t=[0,1,2,..,12]. For each class a binary image is 

calculated containing the value “1” for pixels with a gray level value falling into the gray level interval of class t 

and value “0” for all other pixels, see Fig.4. We call the image f(x,y,t) in the following class image. Object 

labeling is done in the class images with the contour following method [Z96]. Then texture features from these 

objects are calculated for classification. 

Please In chart Fig. 4 

 
 

Fig. 4. Examples of Cell Images for 10 different Classes 
 

6Texture Feature Description based on Random Sets 
 

Boolean sets were invented by Matheron[Mat75]. An in-depth description of the theory can be found in Stoyan et 

al[StKM87]. The Boolean model allows to model and simulate a huge variety of textures e.g. for crystals, leaves, 

etc. The texture modelX is obtained by taking various realizations of compact random sets, implanting them in 

Poisson points in R
n
, and taking the supremum. The functional moment  of X, after Booleanization, is 

calculated as: 

 
(1) 

)(BQ

 

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where is the set of the compact random set of R
n
,  the density of the process and is an average 

measure that characterizes the geometric properties of the remaining set of objects after dilation.  

Relation (25) is the fundamental formula of the model. It completely characterizes the texture model. does 

not depend on the location of , i.e., it is stationary. One can also provide that it is ergodic so that we can peak 

the measure for a specific portion of the space without referring to the particular portion of the space. 

Formula 25 show us that the texture model depends on two parameters: 
 

  the density  of the process and 

 a measure that characterizes the objects. In the one-dimensional space, it is the average length of 

the lines and in the two-dimensional space   is the average measure of the area and the perimeter 

of the objects under the assumption of convex shapes.  
 

We consider the two-dimensional case and develop a proper texture descriptor.  

Suppose now that we have a texture image with 8 bit gray levels. Then we can consider the texture image as the 

superposition of various Boolean models, each of them having a different gray level value on the scale from 0 to 

255 for the objects within the bit plane. 
 

To reduce the dimensionality of the resulting feature vector, the gray levels ranging from 0 to 255 are now 

quantized into S intervals t (S=12). Each image f(x,y) is classified according to the gray level into t classes, with 

t=0,1,2,..,S. For each class a binary image is calculated containing the value “1” for pixels with a gray level 

value falling into the gray level interval of class t and value “0” for all other pixels. The resulting bit plane f(x,y,t) 

can now be considered as a realization of the Boolean model. The quantization of the gray level into S intervals 

was done at equal distances. In the following, we call the image f(x,y,t) a class image.  In the class image we can 

see a lot of different objects. These objects get labeled with the contour following method[Zam96]. Afterwards, 

features from the bit-plane and from these objects are calculated. Since it does not make sense to consider the 

features of every single object due to the curse of dimensionality, we calculate the mean and standard deviation 

for each feature that characterizes the objects such as the area and the contour. In addition to that, we calculate the 

number of objects and the areal density in the class image.  
 

The list of features and their calculation are shown in Table 1. The first one is the areal density of the class image 

t which is the number of pixels in the class image, labeled by “1”, divided by the area of the image. If all pixels of 

an image are labeled by “1”, then the density is one. If no pixel in an image is labeled, then the density is zero.  

 

Please In chart Table 1 

 

Table 1. Texture Features based on Random Set 
 

From the objects in the class image t, the area, a simple shape factor, and the length of the contour are calculated. 

Per the model, not a single feature of each object is taken for classification due to the curse of dimensionality, but 

the mean and the standard deviation of each feature are calculated over all the objects in the class image t. We 

also calculate the frequency of the object size in each class image t.  
 

6 Protoclass Classifiers 
 

6.1 The Overall Method 
 

A prototype-based classifier classifies a new sample according to the prototypes in data base and selects the most 

similar prototype as output of the classifier. A proper similarity measure is necessary to perform this task but in 

most applications there is no a-priori knowledge available that suggests the right similarity measure. The method 

of choice to select the proper similarity measure is therefore to apply a subset of the numerous similarity measures 

known from statistics to the problem and to select the one that performs best according to a quality measure such 

as, for example, the classification accuracy. The other choice is to automatically build the similarity metric by 

learning the right attributes and attribute weights. The later one we chose as one option to improve the 

performance of our classifier. 
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When people collect prototypes to construct a dataset for a prototype-based classifier it is useful to check if these 

prototypes are good prototypes. Therefore a function is needed to perform prototype selection and to reduce the 

number of prototypes used for classification. This results in better generalization and a more noise tolerant 

classifier. If an expert selects the prototypes, this can result in bias and possible duplicates of prototypes causing 

inefficiencies. Therefore a function to assess a collection of prototypes and identify redundancy is useful. 
 

Finally, an important variable in a prototype-based classifier is the value used to determine the number of closest 

cases and the final class label. Consequently, the design-options the classifier has to improve its performance are 

prototype selection, feature-subset selection, feature weight learning and the „k‟ value of the closest cases (see 

Figure 1). 
 

We assume that the classifier can start in the worst case with only one prototype per class. By applying the 

classifier to new samples the system collects new prototypes. During the lifetime of the system it will chance its 

performance from an oracle-based classifier, which will classify the samples roughly into the expected classes, to 

a system with high performance in terms of accuracy.  
 

In order to achieve this goal we need methods that can work on less number of prototypes and on large number of 

prototypes. As long as we have only a few numbers of prototypes feature subset selection and learning the 

similarity might be the important features the system needs. If we have more prototypes we also need prototype 

selection.  
 

For the case with less number of prototypes we chose methods for feature subset selection based on the 

discrimination power of attributes. We use the feature based calculated similarity and the pair-wise similarity 

rating of the expert and apply the adjustment theory [Nie08] to fit the similarity value more to the true value. 

For large number of prototypes we choose a decremental redundancy-reduction algorithm proposed by Chang 

[Cha74] that deletes prototypes as long as the classification accuracy does not decrease. The feature-subset 

selection is based on the wrapper approach [Per02] and an empirical feature-weight learning method [LCSP10] is 

used. Cross validation is used to estimate the classification accuracy. A detailed description of our prototype-

based classifier ProtoClass is given in [Pern08a]. The prototype selection, the feature selection, and the feature 

weighting steps are performed independently or in combination with each other in order to assess the influence 

these functions have on the performance of the classifier. The steps are performed during each run of the cross-

validation process. 
 

The classifier schema shown in Figure 5 is divided in the design phase (Learning Unit) and the normal 

classification phase (Classification Unit). The classification phase starts after we have evaluated the classifier and 

determined the right features, feature weights, the value for „k‟ and the cases. 
 

Our classifier has a flat data base instead of a hierarchical that makes it easier to conduct the evaluations. 

 

Fig. 5. Prototype-based Classifier 
 

6.2Classification Rule 
 

Assume we have n prototypes that represent m classes of the application. Then, each new sample is classified 

based on its closeness to the n prototypes. The new sample is associated with the class label of the prototype that 

is the closest one to sample. 

More precisely, we call x1,x2,…,xi,…xna closest case to x if    min , ,i nd x x d x x , where i=1,2,…,n. 

 

The rule chooses to classify x into category lC , where  is the closest case to x and  belongs to class lC  with 

},,1{ ml  . 
 

In the case of the k-closest cases we require k samples of the same class to fulfill the decision rule. As a distance 

measure we can use any distance metric. In this work we used the city-block metric. 

The pair-wise similarity measure Simij among our prototypes shows us the discrimination power of the chosen 

prototypes based on the features. 
 

The calculated feature set must not be the optimal feature subset. The discrimination power of the features must 

be checked later. For a less number of prototypes we can let the expert judge the similarity SimEij },,1{, nji 

between the prototypes. This gives us further information about the problem which can be used to tune the 

designed classifier. 

nx

nx nx
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6.3 Using Expert’s Judgment on Similarity and the Calculated Similarity to Adjust the System 
 

Humans can judge the similaritySimEijamong objects on a rate between 0 (identity) and 1(dissimilar). We can use 

this information to adjust the system to the true system parameters [Nie08].  

Using the city-block distance as distance measure, we get the following linear system of equations: 






N

l

jlillij ffa
N

SimE

1

1
with },,1{, nji  , ilf  the feature l of thei-th prototype and N the number of 

attributes.  

The attribute al is the normalization of the feature to the range {0,1} with 
ll

l
ff

a
min,max,

1


 that is calculated 

from the prototypes. That this is not the true range of the feature value is clear since we have too less samples. 

The factor al is adjusted closer to the true value by the least square method using expert`s SimEij: 
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0


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7 Results 
 

Figure 6a shows the accuracy for classification based on different number of prototypes for all attributes and Fig. 

6b shows the accuracy for a test set based on only the three most discriminating attributes. The test shows that the 

classification accuracy is not so bad for only three prototypes but with the number of prototypes the accuracy 

increases. The selection of the right subset of features can also improve the accuracy and can be done based on the 

method presented in Section 6 for low number of samples. The right chosen number of closest cases k can also 

help to improve accuracy but cannot be applied if we only have three prototypes or less prototypes in the data 

base. 
 

a) Accuracy for different number of prototypes 

using all attributes 

b) Accuracy for different number of prototypes 

using 3 attributes (Area5, ObjCtn0, ConSk3) 

 

Fig. 6. Accuracy versus Prototypes and for two different feature subset 

 

Figure 7 shows the classification results for the 220 instances started without adjustment meaning the weights al 

are equal to one (1;1;1) and with adjustment based on expert`s rating where the weights are (0.00546448; 

0.00502579;0.00202621) as an outcome of the minimization problem . 

 

Fig. 7. Accuracy depending on choice of attributes (k=1) 

 

Table 2.  Difference between 3 Prototypes using the 3 attributes (ObjCnt0,ArSig0, ObjCnt1), 

 

Table 2 shows the difference values of three prototypes. The result shows that accuracy can be improved by 

applying the adjustment theory and especially the class specific quality is improved by applying the adjustment 

theory (see Fig. 8). 

 

Fig. 8. Accuracy with and without adjustment theory 

 

Fig. 9 Number of removed Prototypes 

 

Fig. 10 Number of removed Features 

 

The application of the methods for larger samples set did not bring any significant reduction in the number of 

prototypes (see Fig. 9) or in the feature subset (see Fig. 10). The prototype selection method reduced the number 

of prototypes only by three prototypes.  
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We take it as an indication that we have not yet the enough prototypes and that the accuracy of the classifier can 

be improved by collecting more prototypes. How these functions worked on another data set can be found in 

[LCSP08b]. 
 

In Summary, we have shown that the chosen methods are valuable methods for a prototype-based classifier and 

can improve the classifier performance. For future work we will do more investigations on the adjustment theory 

as a method to learn the importance of features based on less number of features and for feature subset selection 

for less number of samples. 
 

8 Conclusions 
 

We have presented our results on a prototype-based classification. Such a method can be used for incremental 

knowledge acquisition and automatic image classification. Therefore the classifier needs methods that can work 

on less numbers of prototypes and on large number of prototypes. Our result shows that feature subset selection 

based on the discrimination power of a feature is a good method for less numbers of prototypes. The adjustment 

theory in combination with an expert similarity judgment can be taken to learn the true concept description of a 

class in case of less prototypes. If we have large number of prototypes an option for prototype selection that can 

check for redundant prototypes is necessary.  
 

The system can start to work on a low number of prototypes and can instantly collect samples during the usage of 

the system. These samples get the label of the closest case. The system performance improves as more prototypes 

the system has in its data base. That means an iterative process of labeled sample collection based on prototype 

based classification is necessary followed by a revision of these samples after some time in order to sort out 

wrong classified samples until the system performance has been stabilized. 
 

The test of the system is done on the study of the internal mitochondrial movement of cells. The biologist know 

from the literature how the different signature of mitochondrial movement of cells should look like. Based on this 

knowledge he can pick prototypical images that are the starting point for our system development. If we give him 

an introduction to the concept of similarity [Per02] he is also able to give a value for the pairwise similarity value 

between the different prototypical images. These values and the calculated similarity values can be used to come 

close to the true similarity value by our adjustment function. It reduces the influence of the uncertainty in the 

features. 
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